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Preface

The goal of this document is to introduce two interesting conjectures that June Huh and
I formulated in January 2020 and to present some of the progress that has been made
towards a proof of the conjecture. I assume as little background as possible: I do not
assume that the reader knows what a matroid is; I do not assume that the reader has
encountered real-rootedness before; the proof of Theorem 4.3.2 assumes some knowledge
of toric varieties, but the proof can be skipped. The first three chapters are expository;
the fourth chapter and the appendices contain original work.
I would like to thank my excellent advisors June Huh and Ravi Vakil for their support

and advice, as well as Nicholas Proudfoot, Daniel Litt, Petter Brändén, and Francesco
Brenti for useful conversations and pointers.
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Chapter 1.

What is a matroid?

Matroids capture the general notion of “independence”.
We begin with two examples that will motivate one of many equivalent definitions1.

Example 1.0.1. Pick a vectorspace + over some field and then choose a finite, nonempty
set � = {E1, · · · , E=} of = ≤ |+ | vectors; Now, define a subset I of ℘(�) as follows:

I B {� ⊂ � : � is linearly independent}.

Note that the set I always contains the empty set. It is also closed under taking subsets,
for any subset of a linearly independent set is itself linearly independent. Finally, suppose
that � and � are both sets in I and |�| < |� |. Then, by the Steinitz exchange lemma,
there exists a vector E that is in � but not in � such that � ∪ {E} is itself in I . That is,
linearly independent subsets of � can “steal” elements from larger linearly independent
subsets and remain independent.

Example 1.0.2. Pick a field extension !/ , preferably transcendental so as to make
this example interesting. Then, choose a finite nonempty set � = {G1, · · · , G=} of = ≤ |! |
elements in !. Now, define a subset I of ℘(�) as follows:

I B {� ⊂ � : � is algebraically independent}.

Here, just as above, the empty set is in I , the set I is closed under taking subsets,
and if � and � are sets in I with |�| < |� |, then there is an element E in � \ � with
� ∪ {E} ∈ I by the Steinitz exchange lemma for transcendental extensions2.

De�nition 1.0.3. A matroid consists of a finite set � , called the groundset, together
with a set I ⊂ ℘(�) of subsets of � that satisfies the following properties:

1. the empty set is in I ;

2. if � is an element of I , then so are all subsets of �; and
1To read about other definitions and the general theory of matroids, we recommend the wonderful book by
Oxley [Oxl06].

2If you haven’t seen a proof of this, you can read one in the proof of Theorem 1.1 in Chapter VIII of [Lan02]
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3. if � and � are elements of I and |�| < |� |, then there exists an element E inside
� \ � such that � ∪ {E} is an element of I .

Elements of I are called independent sets.

Remark 1.0.4. An isomorphism between two matroids is a bijection on their groundsets
under which independent sets correspond to independent sets. One might then ask
whether all matroids are isomorphic to those described in Examples 1.0.1 and 1.0.2.
The answer is “No”; see the appendix of [Oxl06] for examples of matroids that belong to
neither class and [Nel18] for a proof that almost all matroids are not isomorphic to those
described in Example 1.0.1. The matroids described in Example 1.0.1 are called linear
matroids while the matroids described in Example 1.0.2 are called algebraic matroids.

Example 1.0.5. For nonnegative integers A and = with = ≥ A, the uniform matroid*=A is the
matroid whose groundset is {1, · · · , =} and whose independent sets are all of those subsets
of size at most A. Every bijection from the groundset of *=A to itself is an isomorphism.

De�nition 1.0.6. If " is a matroid with groundset � , the rank of a subset ( ⊂ �( ⊂ �( ⊂ � is the
size of the largest independent set of " contained in (; it is denoted rk" ((). The rank
of """ is the rank of � ; it is denoted rk("). A subset of � that is maximal for its rank is
called a �at of " . The flats of " form a poset with the relation ≤ defined by inclusion.

Example 1.0.7. The flats of the uniform matroid *=A are its independent sets and the
entire groundset. If ( is a subset of the groundset of *=A , then rk*=A (() is equal to |( |
if |( | is not more than A; otherwise it is equal to A. Note that rank and the size of the
groundset uniquely determine a uniform matroid. For this reason, we will often refer to
*=A as the “rank A uniform matroid on = elements”.

Example 1.0.8. Suppose that " is a linear matroid with groundset � , so it is isomorphic
to a matroid " ′ whose groundset � ′ is a set of vectors in a vectorspace + and whose in-
dependent subsets are linearly independent subsets. Let 5 : � → � ′ be an isomorphism
between " and " ′. If ( is a subset of � , then the rank rk" (() is equal to the dimension
of span+ ( 5 (()). A subset ( of � is a flat if and only if there holds ( = span+ ( 5 (()) ∩� ′.
Now, we define a few useful matroid constructions.

De�nition 1.0.9. Suppose that " is a matroid with groundset � and that ( is a subset
of � with complement ) , so there hold (∪) = � and (∩) = ∅. Then, one readily verifies
that the set ) together with the collection of independent sets of " that are contained in
) are a matroid. This matroid is called the deletion of ((( from """ or, alternatively, the
localization of """ at ))) , and is denoted " \ ( or ") . The rank of ") is the rank of )
and the poset of flats of ") can be naturally identified with the flats contained in ) .

De�nition 1.0.10. Suppose that " is a matroid with groundset � and that ( is a subset
of � . Pick a maximal (with respect to size) independent subset � of (. Then, one readiliy
verifies that the set � \( together with the collection of subsets of � \( whose union with
� is independent in " is a matroid and that any choice of maximal independent subset
of ( yields the same matroid. This matroid is called the contraction of """ by ((( and is
denoted "( . The rank of "( is rk(") − rk" (() and its poset of flats can be naturally
identified with the poset flats of " that contain (.
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De�nition 1.0.11. Suppose that " and # are matroids with groundsets �1 and �2,
respectively. Then, it is straightforward to verify that the set �1 t �2 together with the
collection all subsets of �1 t �2 of the form �1 ∪ �2 for independent subsets �1 ⊂ �1 and
�2 ⊂ �2 forms a matroid. This matroid is called the direct sum of """ and ### and is
denoted " ⊕ # .

Remark 1.0.12. If " and # are matroids with groundsets �1 and �2 respectively, a
strong map of matroids is a map �1 → �2 such that preimages of flats in �2 are flats in
�1. Matroids together with strong maps form a category. In this category, the matroid
" ⊕ # really is the coproduct of " and # . We direct the interested reader towards the
beautiful paper by Heunen and Patta [HP17].
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Chapter 2.

Chow rings of matroids

For the remainder of the document, for technical reasons, every matroid will be assumed
to have a set of flats that contains the empty set. This condition is called looplessness.
We begin by defining the Chow ring and augmented Chow ring of a matroid. The in-

troduction of these rings was motivated by cohomology rings of compactifications of
hyperplane arrangement complements; we refer the reader interested in this perspective
to the wonderful paper [FY04]. Chow rings and augmented Chow rings of matroids have
played key roles in the resolutions of longstanding problems in matroid theory, includ-
ing the Heron-Rota-Welsh conjecture (see [AHK18]) and the Downling-Wilson conjecture (see
[Bra+20b]).

De�nition 2.0.1. If " is a matroid with groundset � , the quotient of the ring

W [G� : � is a nonempty proper flat of "] .

by the sum of ideals( ∑
� 381

G� −
∑
� 382

G� for all 81, 82 ∈ �, 81 ≠ 82

)
+

(
G�1

G�2
for all �1, �2 incomprable nonempty proper flats of "

)
is called the Chow ring of M. It is denoted CH(").
De�nition 2.0.2. If " is a matroid with groundset � , the quotient of the ring

W [G� : � is a nonempty proper flat of "] .

by the sum of ideals ( ∑
� 381

G� −
∑
� 382

G� for all 81, 82 ∈ �, 81 ≠ 82

)
and (

G�1
G�2

for all �1, �2 incomparable nonempty proper flats of "
)

is called the augmented Chow ring of M. It is denoted CH(").
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De�nition 2.0.3. If " is a matroid with groundset � , the quotient of the ring

W [H8 : 8 ∈ �] ⊗ W [G� : � is a proper flat of "]

by the sum of the ideals (
H8 −

∑
8∉�

G� : 8 ∈ �
)

+
(
G�1

G�2
for all �1, �2 incomparable proper flats of "

)
+

(
H8G� for every 8 ∈ � and proper flat � with � ∌ 8

)
is called the augmented Chow ring of M. It is denoted CH(").

Theorem 2.0.4 (Proposition 2.8 in [Bra+20a]). Suppose that " is a matroid of rank A with a
nonempty groundset. Then, there exists a well-de�ned linear map deg

"
: CHA−1 (") → W such

that if F is a complete �ag of nonempty proper �ats, then there holds deg
"

(∏
� ∈F G�

)
= 1.

Furthermore, there exists a well-de�ned linear map deg" : CHA (") → W such that if F is a
complete �ag of proper �ats, then there holds deg"

(∏
� ∈F G�

)
= 1.

For every integer : , these maps define Poincaré pairings

CH: (") × CH3−:−1 (") → W : ([1, [2) ↦→ deg
"
([1[2),

CH: (") × CH3−: (") → W : ([1, [2) ↦→ deg" ([1[2).

Theorem 2.0.5 (Poincaré duality, Theorem 1.3 in [Bra+20a]). Let " be a matroid of rank
A with a nonempty groundset. For every integer 0 ≤ : < A

2 , the Poincaré pairing

CH: (") × CH3−:−1 (") → W : ([1, [2) ↦→ deg
"
([1[2)

is nondegenerate. Furthermore, for every integer 0 ≤ 8 ≤ A
2 , the Poincaré pairing

CH: (") × CH3−: (") → W : ([1, [2) ↦→ deg" ([1[2)

is nondegenerate.

Braden, Huh, Matherne, Proudfoot, and Wang prove the following remarkable decom-
position theorems for CH(") and CH(").

Theorem 2.0.6 (Semi-small decomposition, Theorem 1.1 in [Bra+20a]). Let " be a ma-
troid with groundset � and poset of �ats F . If 8 is an element of � , let S 8 (") denote the set
{� ∈ F : � ∪ {8} ∈ F and ∅ ( � ( � \ {8}}. If 8 is not contained in every basis of " , then
there holds

CH(") � CH(" \ {8}) ⊕
⊕
� ∈S 8

CH("�∪{8 }) ⊗ CH("� ) [−1] .

If 8 is contained in every basis of " , then there holds

CH(") � CH(" \ {8}) ⊕ CH(" \ {8}) [−1] ⊕
⊕
� ∈S 8

CH("�∪{8 }) ⊗ CH("� ) [−1] .
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Theorem 2.0.7 (Theorem 1.2 in [Bra+20a]). Let " be a matroid with groundset � and poset
of �ats F . If 8 is an element of � , let S8 (") denote the set {� ∈ F : � ∪ {8} ∈ F and � (
� \ {8}}. If 8 is not contained in every basis of " , then there holds

CH(") � CH(" \ {8}) ⊕
⊕
� ∈S8

CH("�∪{8 }) ⊗ CH("� ) [−1] .

If 8 is contained in every basis of " , then there holds

CH(") � CH(" \ {8}) ⊕ CH(" \ {8}) [−1] ⊕
⊕
� ∈S8

CH("�∪{8 }) ⊗ CH("� ) [−1] .

These decompositions give a method for computing the Poincaré polynomials of these
rings.

Corollary 2.0.8. Suppose that " is a matroid. Then, the respective Poincaré polynomials
P(", G) and P(", G) of CH(") and CH(") can be computed as follows. Let 8 be an element
of " and let the sets S 8 and S8 be de�ned as in Theorems 2.0.6 and 2.0.7. If 8 contained in
every basis of " and the groundset of " has at least two elements, then there hold

P(", G) = P(" \ {8}, G) + G
∑
S 8

P("�∪{8 }, G) P("� , G)

and
P(", G) = P(" \ {8}, G) + G

∑
S8

P("�∪{8 }, G) P("� , G).

If 8 is not contained in every basis of " and the groundset of " has at least two elements, then
there hold

P(", G) = P(" \ {8}, G) + G P(" \ {8}, G) + G
∑
S 8

P("�∪{8 }, G) P("� , G)

and
P(", G) = P(" \ {8}, G) + G P(" \ {8}, G) + G

∑
S8

P("�∪{8 }, G) P("� , G).

If " consists of a single element, then P(", G) = 1 and P(", G) = G + 1.
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Chapter 3.

Real-rootedness

In this chapter, we explore the basic theory of polynomials in X[G] that have all their
roots on the real line. We start by exploring the interesting combinatorial properties of
such polynomials, then explore the illuminating example of the Eulerian polynomials,
which will turn out to be directly relevant in our discussion of the geometry of matroids.

3.1. De�nition and basic properties

De�nition 3.1.1. A polynomial in X[G] is called real-rooted if all of its roots in I lie on
the real line. A subset ( ⊂ X[G] is called real-rooted if each of its elements is real-rooted.

The following notion will be useful for proving real-rootedness.

De�nition 3.1.2. Suppose that 5 and 6 are two nonzero, real-rooted polynomials with
degrees = and = + 1, respectively. Let A1 ≤ · · · ≤ A= denote the roots of 5 and let
B1 ≤ · · · ≤ B=+1 denote the roots of 6. If there holds B1 ≤ A1 ≤ B2 ≤ · · · ≤ A= ≤ B=+1, then
5 is said to interlace the polynomial 6.

The “coe�cient functions” give a bijection between X[G] and the topological space
X∞. This allows us to endow X[G] with a topological structure. With this structure, the
subset of polynomials with simple (complex) roots is dense in X[G], by the continuity of
roots. The continuity of roots also yields the following useful lemma.

Lemma 3.1.3. If ( 58)∞8=1 is a sequence of real-rooted polynomials, then lim8 58 is real-rooted.
If (68)∞8=1 is a sequence of real-rooted polynomials and 5 9 interlaces 6 9 for all 9 , then lim8 58
interlaces lim8 68 .

Lemma 3.1.4. Suppose that 5 ∈ X[G] is a real-rooted polynomial. Then, the polynomials mG 5
and Gdeg 5 5 ( 1

G
) are also real-rooted. Furthermore, the polynomial mG 5 interlaces 5 .

Proof. The real-rootedness of mG 5 and its interlacing 5 is clear in the case in which 5 (and
therefore mG 5 ) has only simple roots. The general case follows from the density of the
space of polynomials having only simple roots and Lemma 3.1.3. To see that Gdeg 5 5 ( 1

G
)

is real-rooted, note that the real-rootedness of a real polynomial is equivalent to its not
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having roots in the complex upper half-plane. Thus, the claim follows from the fact that
I ↦→ 1

I
preserves the complex upper half-plane. �

The coe�cients of real-rooted polynomials satisfy a number of interesting combinato-
rial properties. For example, we’ll soon prove that if a polynomial

∑=
8=1 08G

8 is real-rooted
and 08 is nonnegative for all 1 ≤ 8 ≤ =, then the sequence (08)=8=1 satisfies two properties,
log-concavity and unimodality, which we now define.

De�nition 3.1.5. A finite sequence (28)=8=1 of real numbers is called log-concave if there
holds 22

8
≥ 28−128+1 for all 1 ≤ 8 ≤ =.

De�nition 3.1.6. A finite sequence (28)=8=1 of real numbers is called unimodal if there
exists 0 ≤ ℓ ≤ = such that the subsequence (28)ℓ8=1 is non-decreasing and the subsequence
(28)=8=ℓ is non-increasing.

Theorem 3.1.7. Suppose that (28)=8=0 is a positive, log-concave sequence. Then (28)=8=0 is uni-
modal.

Proof. Since our sequence is positive, we can write 28/28+1 ≥ 28−1/28, so the sequence of
successive quotients of terms is non-increasing. �

Lemma 3.1.8. Suppose that (28)=8=1 and (38)8=1 are log-concave sequences and that 28 ≥ 0 and
38 ≥ 0 for all 1 ≤ 8 ≤ =. Then, the sequence (2838)=8=1 is log-concave.

Proof. Obvious. �

Proposition 3.1.9. For any �xed, positive integer =, the sequence (
(=
:

)
)=
:=0

is log-concave.

Proof. We have (=
:

)2( =
:−1

) ( =
:+1

) =
(: + 1) (= − : + 1)

: (= − :) > 1,

which proves the claim. �

Theorem 3.1.10. Suppose that 5 (G) = 20 + 21G + · · · + 2=G= is a real-rooted polynomial in
X[G] and that 28 is nonnegative for all 1 ≤ 8 ≤ =. Then, the sequence 20, · · · , 2= is log-concave.

Proof. If we can show that (28/
(=
8

)
)=
8=0 is log-concave, then Lemma 3.1.8 will imply that

the sequence (28/
(=
8

)
·
(=
8

)
)=
8=0 is log-concave, because Proposition 3.1.9 shows that (

(=
8

)
)=
8=0

is log-concave. Thus, it su�ces to show that the sequence (28/
(=
8

)
)=
8=0 is log-concave.

Fix 8 with 1 ≤ 8 ≤ = − 1. Then, the polynomial 6(G) B (G=−8+1 ( 5 ) (8−1)
(
1
G

)
) (=−8−1) is

equal to (=−8−1)!2 (8 − 1)!28−1G2 + (= − 8)!8!28G + (= − 8 − 1)! 8+12 28+1. One readily verifies that
there holds

disc(6) = =!2 ©«
(
28(=
8

) )2 − 28−1( =
8−1

) 28+1( =
8+1

) ª®¬ .
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But Lemma 3.1.4 shows that 6 is real-rooted, and thus the discriminant disc(6) must be
nonnegative. Thus, we have (

28(=
8

) )2 ≥ 28−1( =
8−1

) 28+1( =
8+1

) ,
as desired. �

Corollary 3.1.11. If 5 is a polynomial that is real-rooted and has positive coe�cients, then the
coe�cients of 5 form a unimodal sequence.

Proof. Combine Theorem 3.1.10 and Theorem 3.1.7. �

3.2. The Eulerian Polynomials

In this section, we will explore the Eulerian polynomials, a certain family of polynomials
that consists entirely of real-rooted polynomials (we will prove this!).
Let S= denote the symmetric group of permutations on {1, · · · , =}. Note that a per-

mutation f ∈ S= can be specified by the sequence (f(1), · · · , f(=)) and every sequence
of length = that contains every integer between 1 and = specifies a permutation.
If f ∈ S= is a permutation, we denote by des(f) the quantity |{8 : f(8) > f(8 + 1)}|.

De�nition 3.2.1. The Eulerian number
〈
=

:

〉〈
=

:

〉〈
=

:

〉
is the quantity |{f ∈ S= : des(f) = :}|.

The nth Eulerian polynomial Gn (x) is the polynomial
∑
f∈S= C

des(f) =
∑=−1
8=0

〈
=

:

〉
C: .

Theorem 3.2.2. For all = > 0 and 0 ≤ : ≤ = − 1, there holds〈
=

:

〉
=

〈
=

= − 1 − :

〉
.

Proof. Let g ∈ S= denote the permutation : ↦→ = + 1 − : for any 1 ≤ : ≤ =. Then, the
map S= → S= : f ↦→ g ◦ f is a bijection that sends the set {f ∈ S= : des(f) = :} to
the set {f ∈ S= : des(f) = = − 1 − :} for any 0 ≤ : ≤ = − 1. �

Corollary 3.2.3. The Eulerian polynomials are palindromic, i.e. for any =, the Eulerian
polynomial �= (G) satis�es G=−1�=

(
1
G

)
.

Now, we prove that the Eulerian numbers satisfy an interesting recurrence relation.

Lemma 3.2.4. For any = > 1 and 1 < : ≤ =, there holds〈
=

:

〉
= (= − :)

〈
= − 1
: − 1

〉
+ (: + 1)

〈
= − 1
:

〉
.
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Proof. Let f be a permutation in S= with des(f) = : . Deleting = from the sequence
representing f yields a permutation W in S=−1 with des(W) = : or des(W) = : − 1. Thus,
every element of {f ∈ S= : des(f) = :} arises from inserting = into the sequence
associated with a permutation W ∈ S=−1 with des(W) = : or des(W) = : − 1.
If W ∈ S=−1 is such that des(W) = : , then a permutation in f ∈ S= with des(f) = : is

obtained by inserting = in the last position in the sequence representing W or in between
two consecutive elements W(8) and W(8+1) with W(8) > W(8+1). There are precisely (: +1)
ways to do this.
If W ∈ S=−1 is such that des(W) = :−1, then a permutation in f ∈ S= with des(f) = : is

obtained by inserting = in the first position in the sequence representing W or in between
two consecutive elements W(8) and W(8 + 1) with W(8) < W(8 + 1). There are precisely =− :
ways to do this. �

Lemma 3.2.5. For any = ≥ 0, the Eulerian polynomials �= (G) satisfy the following relation:

�=+1 (G) = (1 + =G)�= (G) + G(1 − G)�′= (C).

Proof. We compute

(1 + =G)�= (G) + G(1 − G)�′= (C) =
=−1∑
:=0

〈
=

:

〉
G: +

=∑
:=1

=

〈
=

: − 1

〉
G:

+
=−1∑
:=1

:

〈
=

:

〉
G: −

=−1∑
:=1

(: − 1)
〈
=

: − 1

〉
G:

=

=∑
:=0

(
(= + 1 − :)

〈
=

: − 1

〉
+ (: + 1)

〈
=

:

〉)
C:

=

=∑
:=0

〈
= + 1
:

〉
G:

=�=+1 (G) (3.1)

where the second to last step follows from Lemma 3.2.4. �

Theorem 3.2.6. The Eulerian polynomials have only simple, real roots and the =th Eulerian
polynomial interlaces the (= + 1)st Eulerian polynomial.

Proof. We proceed via induction. The base case is easy. Suppose that the claim holds for
the first = Eulerian polynomials. By Lemma 3.2.5, we may write �=+1 (G) = (1+=G)�= (G)+
G(1 − G)�′= (C). Rearranging, we obtain

�=+1 (G) = (1 + =) (G�= (G)) + (1 − G) (G�= (G)) ′. (∗)

By Lemma 3.1.4, the polynomial (G�= (G)) ′ interlaces the polynomial G�= (G). Thus, the
sign of (1 − G) (G�= (G)) ′ alternates at the roots of G�= (G) and from (∗), the same is true
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of �=+1 (G). So the polynomial �=+1 (G) has roots A1, · · · , A= such that if �= has roots
B1, · · · , B=, then there holds

B1 < A1 < B2 < · · · < B= < A= < 0.

To prove the claim, we must show that �=+1 has an additional root A0 such that there
holds A0 < B1. Analyzing the behavior of �=+1 (G) and �= (G), as G tends to −∞, it
is straightforward to see that if = is even (resp. odd), then �=+1 (G) is negative (resp.
positive) at B1, but that �=+1 (G) tends to∞ (resp. −∞) as G tends to −∞. This establishes
the existence of A0. �
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Chapter 4.

Two real-rootedness conjectures

4.1. Motivation and statement of the conjecture in the
standard case

Proposition 4.1.1. For all = ≥ 0, the Poincaré polynomials P(*== , G) of CH(*== ) is the =th
Eulerian polynomial �= (G).

Proof. Theorem 1.1 in [Bra+20a] shows that the Poincaré polynomials satisfy the recur-
rence relation

P(*== , G) = P(*=−1=−1 , G) + G
=−2∑
:=0

(
= − 1
:

)
P(*:: , G) P(*

3−:−1
3−:−1 ), P(*0

0 ) = 1.

Theorem 1.5 in [Pet15] shows that these are the Eulerian numbers. �

Remark 4.1.2. Recall that the Eulerian polynomials are palindromic. This reflects the
fact that the Chow rings CH(*== ) satisfy Poincaré duality!

Recall that the Eulerian numbers are real-rooted and that the =th Eulerian polynomial
interlaces the (= + 1)st Eulerian polynomial.
Based on computational evidence, we conjecture that this generalizes as follows.

Conjecture 4.1.3. Let " be a matroid with a nonempty groundset. Then, the polynomial P(")
is real-rooted. If 8 is any element in the groundset of " , then the polynomial P("{8 }) interlaces
P(").

4.2. Progress on the conjecture in the standard case

The real-rootedness of uniform matroids of small rank can be verified via computational
methods.
Denote by 2A

8
the function `≥A → `≥0 taking = ∈ `≥A to the 8th coe�cient of P(*=A ).
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Lemma 4.2.1. For A > 0 (resp. A = 0) and every 8, the function 2A
8
is a polynomial of degree

less than A (resp. degree zero).

Proof. We proceed by induction on A. First, if A is less than 3, then Poincaré duality shows
that P(*=A ) is equal to 1 or G + 1 for all =; in other words, the functions 2A

8
are constant

for all 8, so the claim is obvious this case.
Now, assuming the claim is true for all A up to some fixed integer B, we would like to

show that the claim holds for A = B +1. Corollary 2.0.8 shows that for any = > B +1, there
holds

2B+18 (=) − 2B+18 (= − 1) =
B−1∑
:=1

∑
9+;=8−1
9≥0
ℓ≥0

(
= − 1
:

)
2:9 (:)2

B+1−(:+1)
ℓ

(= − (: + 1)).

By the inductive hypothesis, the function = ↦→ 2
B+1−(:+1)
ℓ

(= − (: + 1)) is a polynomial of
degree not greater than B + 1 − : − 2. Furthermore, the function = ↦→

(=−1
:

)
is a degree :

polynomial in =. Thus, the RHS is a polynomial of degree not greater than B − 1. From
Newton’s forward di�erence formula, it follows that 2B+1

8
is a polynomial of degree not

greater than B. �

Thus, we have shown for any fixed rank A that there exists a polynomial �A ∈ X[G, H]
such that for any nonnegative H ∈ `, the polynomial �A (G, H) coincides withP(*A+HA ). The
degree bound given in Lemma 4.2.1 allows us to e�ectively compute �A via polynomial
interpolation from the polynomials P(*A+HA ) for H = 0, · · · , A (see Appendix B).
For uniform matroids, Conjecture 4.1.3 can be restated as follows.

Conjecture 4.2.2. For any integer A and any integer H > 0, the polynomial �A (G, H) is real-
rooted. Furthermore, the polynomial G ↦→ �A (G, H) interlaces the polynomial G ↦→ �A+1 (G, H).

Of course, we obtain a strictly more general statement by allowing H to be an arbitrary
nonnegative real number (as opposed to an integer). For a fixed, small rank of A this
statement is checkable by a computer: Since it is already known that the polynomials
P(*== ) are real-rooted, the real-rootedness portion of Conjecture 4.2.2 amounts to check-
ing that the polynomial H ↦→ DiscG (�A (G, H)) has no zeros in the nonnegative orthant,
while the interlacing part amounts to checking that H ↦→ res(�A (G, H), �A+1 (G, H)) has no
zeros in the nonnegative orthant.
This approach yields the following theorem.

Theorem 4.2.3. For A = 0, · · · , 10 and = ≥ A , the polynomial P(*=A ) is real-rooted.

Proof. Using [Wol] and [The20], we compute via interpolation the polynomial H ↦→
DiscG (�A (G, H)) for A = 0, · · · , 15 and verify that it has no zeros in the nonnegative or-
thant. Since the polynomial P(*AA ) is real-rooted for every A ≥ 0, this yields the claim. �

It should be noted that the computation here is relatively e�cient—computing H ↦→
DiscG (�A (G, H)) consists mainly of computing determinants, at which the problem is re-
duced to checking that a univariate polynomial has no nonnegative roots, which can be
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done using Sturm’s Theorem—and, in principle, this method should be applicable to
matroids of larger rank. These computations were not performed due to practical limita-
tions in our computing setup not directly related to the algorithm itself; a more e�ective
implementation is in progress.

4.3. Motivation and statement of the conjecture in the
augmented case

The Poincaré polynomials P(*== ) of the augmented Chow rings of the rank = uniform
matroids *== on = elements belong to a family of polynomials studied by Haglund and
Zhang in [HZ19] that we now describe.
Let B be an element of `=>0. Denote by �B the set of elements 4 ∈ `=≥0 such that

there holds 0 ≤ 48 < B8 . For 4 ∈ �B, Haglund and Zhang define the statistics asc(4) B
|{8 ∈ [0, =] : 48

B8
<

48+1
B8+1
}| and col(4) B |{8 ∈ [0, =] : 48

B8
=

48+1
B8+1
}|, with the conventions

40 = 4=+1 = 0 and B0 = B=+1 = 1. Using these statistics, they define the polynomials

�̃ B (G) B
∑
4∈� B
(1 + G)col(4)Gasc(4) .

Theorem 4.3.1 (Theorem 1.1 in [HZ19]). For any B ∈ `=>0, the polynomial �̃
B (G) is real-

rooted.

Theorem 4.3.2. For = ≥ 1, the polynomial P(*== , G) is equal to �̃ (2, · · · ,=) (G). In particular,
the polynomials P(*== , G) are real-rooted.
Proof. Proposition 2.10 in [Bra+20a] shows that the Chow rings of the matroids *== are
the Chow rings of the toric varieties arising from a family of polytopes called the stellohe-
dra, so computing P(*== , G) amounts to computing the ℎ-polynomials of the stellohedra.
Theorem 3.1 in [HZ19] shows that the ℎ-polynomials of the stellohedra are given by the
polynomials �̃ (2, · · · ,=) (G). �

Motivated by Theorem 4.3.2 and computational evidence, we make the following con-
jecture.

Conjecture 4.3.3. Let " be a matroid with a nonempty groundset. Then, the polynomial P(")
is real-rooted. If 8 is any element in the groundset of " , then the polynomial P("{8 }) interlaces
P(").
We also make the following conjecture based on computational evidence.

Conjecture 4.3.4. For integers A and = with 0 ≤ A ≤ =, the polynomial P(*A=) is equal to
�̃ (=−A+2,=−A+3, · · · ,=) .

By Theorem 4.3.1, Conjecture 4.3.4 implies the real-rootedness part of Conjecture 4.3.3
in the uniform case.

Remark 4.3.5. One might hope that for every matroid ", there exists B ∈ `>0 such
that P(", G) is equal to �̃ B (G). But an exhaustive computer search shows that there is
no such B when " is the matroid *4

3 ⊕ *1
1 .
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4.4. Progress on the conjecture in the augmented case

An analogue of the approach used to verify real-rootedness for uniform matroids of small
rank in the standard case exists in the augmented case.
Denote by 3A

8
the function `≥A → `≥0 taking = ∈ `≥A to the 8th coe�cient of P(*=A ).

Lemma 4.4.1. For A > 0 (resp. A = 0) and every 8, the function 3A
8
is a polynomial of degree

less than A (resp. degree zero).

Proof. The proof is similar to that of Lemma 4.2.1.
As in that proof, we proceed by induction on A. If A is equal to 0 or 1, then Poincaré

duality shows that P(*=A ) is equal to 1 or G + 1 for all =; in other words, the functions 3A
8

are constant for all 8, so the claim is obvious in this case.
Corollary 2.0.8 shows that for any = > A, there holds

3A8 (=) − 3A8 (= − 1) =
A−2∑
:=0

∑
9+;=8−1
9≥0
ℓ≥0

(
= − 1
:

)
3:9 (:)2

A−(:−1)
ℓ

(= − (: + 1)).

By Lemma 4.2.1, the function = ↦→ 2
A−(:+1)
ℓ

is a polynomial of degree not greater than
A − : − 2. Furthermore, the function = ↦→

(=−1
:

)
is a degree : polynomial in =. Thus, the

RHS is a polynomial of degree not greater than A = 2. From here, the claim follows again
from Newton’s forward di�erence formula. �

As in the standard case, this shows for any fixed rank A that there exists a polynomial
�A ∈ X[G, H] such that for any nonnegative H ∈ `, the polynomial �A (G, H) coincides
with P(*A+HA ). The polynomials �A (G, H) can be computed via interpolation just as in the
standard case (see Appendix C). We obtain the following restatement of Conjecture 4.3.3
in the uniform case.

Conjecture 4.4.2. For any integer A and any integer H > 0, the polynomial �A (G, H) is real-
rooted. Furthermore, the polynomial G ↦→ �A (G, H) interlaces the polynomial G ↦→ �A+1 (G, H).

Computing the polynomials H ↦→ DiscG (�A (G, H)) and H ↦→ res(�A (G, H), �A+1 (G, H))
and checking that they have no zeros in the nonnegative orthant can again be used to
test the conjecture for small values of A. We obtain in particular the following analogue
of Theorem 4.2.3.

Theorem 4.4.3. For A = 0, · · · , 6 and = ≥ A , the polynomial P(*=A ) is real-rooted.

Proof. As in the proof of Theorem 4.2.3 using [Wol] and [The20], we compute via inter-
polation the polynomial H ↦→ DiscG (�A (G, H)) for A = 0, · · · , 15 and verify that it has no
zeros in the nonnegative orthant. Since the polynomial P(*AA ) is real-rooted for every
A ≥ 0, this proves the claim. �
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Appendix A.

The Kazhdan-Lusztig
polynomials of matroids

Conjecture 4.3.3 and Conjecture 4.1.3 appear to be related to the conjectured real-
rootedness of the Kazhdan-Lusztig polynomials of matroids. We briefly state the definition of
these polynomials, discuss a few known results, and use a strategy similar to those used
in the proofs of Theorems 4.2.3 and 4.4.3 to obtain the real-rootedness of the Kazhdan-
Lusztig polynomials of uniform matroids of small rank.
For a more complete perspective on the relationship between Kazhdan-Lusztig poly-

nomials of matroids and the (augmented) Chow rings of matroids, we refer the reader
to the excellent paper [Bra+20b].

De�nition A.0.1. Suppose that " is a matroid with a poset F of flats. Let ` denote the
Möbius function on F . Then, the characteristic polynomial of " is the polynomial

j" (G) B
∑
� ∈F

`(∅, �)Grk"−rk" � .

Proposition-De�nition A.0.2 (Theorem 2.2 in [EPW16]). There is a unique way to
assign to each matroid " an integer polynomial KL" (G) such that the following hold:

1. If rk" = 0, then KL" (G) = 1;

2. if rk" is positive, then degKL" (G) is less than 1
2 rk"; and

3. for every ", letting F denote the poset of flats of ", there holds Grk" KL" ( 1G ) =∑
� ∈F j"� (G)KL"� (G).

The polynomial KL" (G) is called the Kazhdan-Lusztig polynomial of " .

Conjecture A.0.3 (Conjecture 3.2 and 3.4 in [GPY17]). For every matroid " , the Kazhdan-
Lusztig polynomial KL" (G) is real-rooted. Suppose that 8 is any element of the groundset of " .
If rk" is odd, then KL"{8} (G) interlaces KL" (G). If rk" is even, then KL" (G) interlaces
GKL"{8} (G).
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The conjecture is known to hold in the following cases, among others.

Theorem A.0.4 (Theorem 3.3 and preceding remarks in [GPY17]). The Kazhdan-Lusztig
polynomials of the matroids *== are identically 1. The Kazhdan-Lusztig polynomials of the ma-
troids *=+1= are real-rooted.

Braden and Vysogorets prove that the Kazhdan-Lusztig polynomials satisfy an inter-
esting recurrence relation that is reminiscent of those in Corollary 2.0.8.

Theorem A.0.5 (Theorem 2.8 in [BV20]). Let " be a matroid with groundset � such that
every two-element subset of � of " is independent. Let 8 be any element of � . If rk" is odd, then
let g(") denote the coe�cient of G (rk"−1)/2 in KL("); otherwise, let g(") denote the integer
0. Let (8 denote the set of subsets of � such that � and � ∪ {8} are both �ats of " . Then, there
holds

KL" (G) = KL"\{8 } (G) − GKL"{8} (G) +
∑
� ∈(8

g("�∪{8 })G (rk"−rk� )/2 KL"� (G).

Denote by 4A
8
the function `≥A → ` taking = ∈ `≥A to the 8th coe�cient of KL(*=A ). 1

Lemma A.0.6. For every A ≥ 0 and every 8, the function 4A
8
is a polynomial of degree not more

than A .

Proof. The proof is similar to that of Lemma 4.2.1. As in that proof, we proceed by
induction on A.
If A = 0, then KL(*=A ) is equal to 1 for all =, so 400 is identically 1.
Now, assuming the claim is true for all A up to some fixed integer B, we would like to

show that the claim holds for A = B+1. Theorem A.0.5 shows that for any = > B+1, there
holds

4B+18 (=)−4B+18 (=−1) = 4A−18−1 (=−1)+
B∑
:=0

(
=

:

)
((B − :) mod 2) 4B−:(B−:−1)/2 (B−:)

∑
9

4:
9−(B+1−:)/2 (:).

Applying the inductive hypothesis and Newton’s forward di�erence formula, the claim
follows. �

Thus, for every integer A ≥ 0, there exists a bivariate polynomial �A (G, H) ∈ X[G, H]
such that for any H ∈ `, we have �A (G, H) = KL(*A+HA ); as before, the degree bound
allows us to compute these polynomials via interpolation (see Appendix D). Checking
that the polynomials H ↦→ DiscG (�A (G, H)) have no roots in X≥1 for small values of A,
keeping in mind that the polynomials KL(*A+1A ) are known to be real-rooted, we obtain
the following theorem.

Theorem A.0.7. For A = 0, · · · , 15 and = ≥ A , the polynomial KL(*=A ) is real-rooted.

1It is a highly nonobvious fact that the coe�cients of the Kazhdan-Lusztig polynomials of arbitrary matroids
are nonnegative, so the functions 4A

8
are in fact nonnegative for all A and 8; see [Bra+20b] for a proof.
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Proof. As in the proof of Theorem 4.2.3 using [Wol], [The20], and [You], we compute via
interpolation the polynomial H ↦→ DiscG (�A (G, H)) for A = 0, · · · , 15 and verify that it
has no zeros in X≥1. Since the polynomials KL(*A+1A ) is real-rooted for every A ≥ 0, this
proves the claim whenever = is greater than A. The claim is immediate when = equals A,
since KL(*AA ) is identically 1. �

Remark A.0.8. One di�erence between the proof of Theorem A.0.7 and the proofs of
Theorems 4.2.3 and 4.4.3 is that H ↦→ DiscG (�A (G, H)) will sometimes have zeroes in the
nonnegative orthant because, while KL(*AA ) is identically 1, Kazhdan-Lusztig polynomi-
als of uniform matroids are nonconstant in general.
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Appendix B.

The polynomials �A (G, H)

We compute the polynomials �A (G, H − 1) for small values of A (we compute �A (G, H − 1)
because this computation is more amenable to our current software setup).

AAA �A (G, H − 1)�A (G, H − 1)�A (G, H − 1)
0 1
1 1
2 G + 1
3 1 + 1

2

(
4 + 3H + H2

)
G + G2

4 1 + 1
6

(
30 + 26H + 9H2 + H3

)
G + 1

6

(
30 + 26H + 9H2 + H3

)
G2 + G3

5 1 + 1
24 (288 + 238H + 83H

2 + 14H3 + H4)G + 1
24 (528 + 642H + 329H

2 + 78H3 + 7H4)G2 +
1
24 (288 + 238H + 83H

2 + 14H3 + H4)G3 + G4
6 G5 + 1

120G
4
(
H5 + 20H4 + 175H3 + 880H2 + 2524H + 3240

)
+

1
120G

3
(
21H5 + 355H4 + 2385H3 + 8105H2 + 14334H + 11040

)
+

1
120G

2
(
21H5 + 355H4 + 2385H3 + 8105H2 + 14334H + 11040

)
+

1
120G

(
H5 + 20H4 + 175H3 + 880H2 + 2524H + 3240

)
+ 1

7 G6 + 1
720G

5
(
H6 + 27H5 + 325H4 + 2325H3 + 10834H2 + 31128H + 41760

)
+

1
240G

4
(
17H6 + 401H5 + 3935H4 + 20835H3 + 63968H2 + 110524H + 86160

)
+

1
720G

3
(
161H6 + 3633H5 + 33485H4 + 162495H3 + 443714H2 + 661152H + 434880

)
+

1
240G

2
(
17H6 + 401H5 + 3935H4 + 20835H3 + 63968H2 + 110524H + 86160

)
+

1
720G

(
H6 + 27H5 + 325H4 + 2325H3 + 10834H2 + 31128H + 41760

)
+ 1

8 G7 + G6 (H7+35H6+553H5+5285H4+34174H3+153440H2+441552H+609840)
5040 +

G5 (113H7+3528H6+47138H5+353640H4+1635977H3+4760952H2+8227932H+6607440)
5040 +

G4 (813H7+24248H6+303660H5+2078300H4+8459787H3+20743772H2+28929900H+18179280)
5040 +

G3 (813H7+24248H6+303660H5+2078300H4+8459787H3+20743772H2+28929900H+18179280)
5040 +

G2 (113H7+3528H6+47138H5+353640H4+1635977H3+4760952H2+8227932H+6607440)
5040 +

G(H7+35H6+553H5+5285H4+34174H3+153440H2+441552H+609840)
5040 + 1
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9 1 + (H8 + 44H7 + 882H6 + 10808H5 + 91329H4 + 559916H3 + 2468108H2 + 7110192H +
9999360)G+ (239H8+9516H7+165326H6+1653624H5+10567151H4+44999724H3+
127161684H2 + 221384496H + 183052800)G2 + (3361H8 + 128404H7 + 2106314H6 +
19439056H5 + 111024809H4 + 405556396H3 + 937947436H2 + 1278537264H +
802851840)G3 + (7631H8 + 287724H7 + 4636534H6 + 41762112H5 + 230678119H4 +
804930756H3 + 1750679636H2 + 2205082128H + 1259516160)G4 + (3361H8 +
128404H7+2106314H6+19439056H5+111024809H4+405556396H3+937947436H2+
1278537264H + 802851840)G5 + (239H8 + 9516H7 + 165326H6 + 1653624H5 +
10567151H4+44999724H3+127161684H2+221384496H+183052800)G6+(H8+44H7+
882H6 + 10808H5 + 91329H4 + 559916H3 + 2468108H2 + 7110192H + 9999360)G7 + G8

10 1
362880 (362880G

9 + G8 (H9 + 63H8 + 1806H7 + 31374H6 + 370713H5 + 3153087H4 +
19669544H3 + 87898356H2 + 256109616H + 367597440) + G7 (493H9 + 28782H8 +
744666H7 + 11262132H6 + 110484885H5 + 735856758H4 + 3365152004H3 +
10316882088H2 + 19464710112H + 17360179200) + G6 (12421H9 + 703134H8 +
17476530H7 + 250742772H6 + 2294432301H5 + 13939291926H4 + 56525551100H3 +
148588339608H2 + 231802373088H + 165180072960) + G5 (53833H9 + 3005910H8 +
73422042H7+1030138956H6+9158075913H5+53591263110H4+207000239828H3+
511057067544H2 + 736254362304H + 475501259520) + G4 (53833H9 + 3005910H8 +
73422042H7+1030138956H6+9158075913H5+53591263110H4+207000239828H3+
511057067544H2 + 736254362304H + 475501259520) + G3 (12421H9 + 703134H8 +
17476530H7 + 250742772H6 + 2294432301H5 + 13939291926H4 + 56525551100H3 +
148588339608H2 + 231802373088H + 165180072960) + G2 (493H9 + 28782H8 +
744666H7 + 11262132H6 + 110484885H5 + 735856758H4 + 3365152004H3 +
10316882088H2+19464710112H+17360179200) +G(H9+63H8+1806H7+31374H6+
370713H5 + 3153087H4 + 19669544H3 + 87898356H2 + 256109616H + 367597440) +
362880)
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Appendix C.

The polynomials �A (G, H)

We compute �A (G, H − 1) for small values of A (here again, we compute �A (G, H − 1)
because this computation is more amenable to our current software setup).

AAA �A (G, H − 1)�A (G, H − 1)�A (G, H − 1)
0 1
1 1
2 1 + (2 + H)G + G2
3 1 + 1

2 (8 + 5H + H
2)G + G2

4 G4+ 1
6G

3 (H3+9H2+32H+48) + 1
3G

2 (2H3+15H2+40H+42) + 1
6G(H

3+9H2+32H+48) +1
5 G5+ 1

24G
4 (H4+14H3+83H2+262H+384) + 1

24G
3 (11H4+130H3+589H2+1262H+1152) +

1
24G

2 (11H4 + 130H3 + 589H2 + 1262H + 1152) + 1
24G(H

4 + 14H3 + 83H2 + 262H + 384) + 1
6 G6 + 1

120G
5
(
H5 + 20H4 + 175H3 + 880H2 + 2644H + 3840

)
+

1
60G

4
(
13H5 + 225H4 + 1575H3 + 5715H2 + 11132H + 9720

)
+

1
60G

3
(
33H5 + 550H4 + 3635H3 + 12110H2 + 20932H + 15720

)
+

1
60G

2
(
13H5 + 225H4 + 1575H3 + 5715H2 + 11132H + 9720

)
+

1
120G

(
H5 + 20H4 + 175H3 + 880H2 + 2644H + 3840

)
+ 1
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Appendix D.

The polynomials �A (G, H)

We compute �A (G, H) for small values of A.
AAA �A (G, H)�A (G, H)�A (G, H)
0 1
1 1
2 1
3 1 + 1

2 (3H + H
2)G

4 1 + 1
6 (20H + 9H

2 + H3)G
5 1

12G
2
(
H4 + 10H3 + 29H2 + 20H

)
+ 1

24G
(
H4 + 14H3 + 71H2 + 130H

)
+ 1

6 1
24G

2 (H5 +17H4 +101H3 +235H2 +150H) + 1
120G(H

5 +20H4 +155H3 +580H2 +924H) +1
7 1

144G
3
(
H6 + 21H5 + 163H4 + 567H3 + 844H2 + 420H

)
+

1
240G

2
(
3H6 + 73H5 + 685H4 + 3035H3 + 6032H2 + 3612H

)
+

1
720G

(
H6 + 27H5 + 295H4 + 1665H3 + 5104H2 + 7308H

)
+ 1

8 1
720G

3
(
3H7 + 89H6 + 1041H5 + 6035H4 + 17772H3 + 24116H2 + 11424H

)
+

1
720G

2
(
2H7 + 65H6 + 857H5 + 5825H4 + 21173H3 + 37310H2 + 21168H

)
+

G(H7+35H6+511H5+4025H4+18424H3+48860H2+64224H)
5040 + 1

9
G4 (H8+36H7+526H6+3996H5+16789H4+38304H3+43164H2+18144H)

2880 +
1

720G
3
(
H8 + 39H7 + 626H6 + 5304H5 + 25199H4 + 65361H3 + 82174H2 + 37296H

)
+

G2 (5H8+208H7+3626H6+34216H5+187565H4+588952H3+942804H2+510624H)
10080 +

G(H8+44H7+826H6+8624H5+54649H4+214676H3+509004H2+623376H)
40320 + 1

10
G4 (2H9+93H8+1812H7+19158H6+118878H5+436857H4+911788H3+969492H2+393120H)

8640 +
G3 (5H9+246H8+5127H7+58737H6+400680H5+1641549H4+3848308H3+4536468H2+1982880H)

15120 +
G2 (3H9+155H8+3434H7+42518H6+320747H5+1501115H4+4203896H3+6217812H2+3233520H)

40320 +
G(H9+54H8+1266H7+16884H6+140889H5+761166H4+2655764H3+5753736H2+6636960H)

362880 + 1
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11 1
3628800 (42G

5H(H9 +55H8 +1290H7 +16830H6 +133593H5 +663135H4 +2037260H3 +
3691820H2 + 3530256H + 1330560) + 60G4H(5H9 + 289H8 + 7167H7 + 99486H6 +
845103H5 + 4507881H4 + 14888953H3 + 28846424H2 + 29165172H + 11452320) +
15G3H(15H9+905H8+23616H7+348330H6+3181059H5+18486825H4+67422774H3+
145440580H2+162220536H+68571360) +5G2H(7H9+439H8+12012H7+187926H6+
1848819H5+11825751H4+48926738H3+124859324H2+172746504H+86660640) +
GH(H9+65H8+1860H7+30810H6+326613H5+2310945H4+11028590H3+34967140H2+
70290936H + 76998240) + 3628800)

12 1
39916800 (66G

5H(5H10 + 337H9 + 9870H8 + 164610H7 + 1720965H6 + 11699961H5 +
51925960H4 + 147023540H3 + 251136480H2 + 230300352H + 84395520) +
165G4H(5H10+350H9+10701H8+187362H7+2068659H6+14937258H5+70726399H4+
213961678H3 + 389041116H2 + 376318152H + 143557920) + 55G3H(7H10 + 507H9 +
16136H8 + 296262H7 + 3460875H6 + 26725419H5 + 137010734H4 + 454505748H3 +
914012728H2 + 971443584H + 398471040) + 11G2H(H + 11)2 (4H8 + 211H7 + 4759H6 +
59881H5 + 458761H4 + 2182564H3 + 6241116H2 + 9550944H + 5088960) + GH(H10 +
77H9 + 2640H8 + 53130H7 + 696333H6 + 6230301H5 + 38759930H4 + 167310220H3 +
489896616H2 + 924118272H + 967524480) + 39916800)

13 1
12! (132G

6H(H11+78H10+2675H9+53040H8+672603H7+5698134H6+32711405H5+
126373260H4 + 319387396H3 + 497990688H2 + 425603520H + 148262400) +
99G5H(15H11 + 1210H10 + 43051H9 + 888390H8 + 11759385H7 + 104241150H6 +
627052593H5 + 2537921450H4 + 6704205500H3 + 10876007640H2 + 9608273856H +
3432274560) + 55G4H(35H11 + 2910H10 + 107155H9 + 2299206H8 + 31808541H7 +
296324946H6+1883447041H5+8090782674H4+22729612844H3+39116334264H2+
36379828224H + 13519059840) + 44G3H(14H11 + 1197H10 + 45538H9 + 1015185H8 +
14692242H7 + 144376011H6 + 977659774H5 + 4526220195H4 + 13869539744H3 +
26260079892H2 +26745883488H +10676128320) +6G2H(9H11 +790H10 +31009H9 +
717750H8 + 10872807H7 + 113024010H6 + 821171307H5 + 4158853490H4 +
14324279684H3+31656550200H2+39330077184H+18557285760)+GH(H11+90H10+
3641H9 + 87450H8 + 1387023H7 + 15282630H6 + 119753843H5 + 671189310H4 +
2664929476H3 + 7292774280H2 + 13020978816H + 13096736640) + 479001600)

14 1
13! (429G

6H(3H12 + 277H11 + 11385H10 + 274565H9 + 4311219H8 + 46233051H7 +
345455835H6+1801484135H5+6462289278H4+15425254372H3+23025740280H2+
19051041600H+6486480000) +143G5H(35H12+3320H11+140575H10+3502744H9+
56996385H8 +635228040H7 +4945087525H6 +26911517512H5 +100775329640H4 +
250710484640H3 + 388613302800H2 + 331987302144H + 115857181440) +
143G4H(28H12 + 2723H11 + 118598H10 + 3051283H9 + 51485814H8 + 597865629H7 +
4874144954H6 + 27920923009H5 + 110537453638H4 + 291396674348H3 +
477819348648H2 + 429022257408H + 155658222720) + 52G3H(18H12 + 1792H11 +
80193H10 + 2129237H9 + 37275414H8 + 451993146H7 + 3878017209H6 +
23598540581H5 + 100326193638H4 + 287268980812H3 + 516037321848H2 +
505974834432H + 197017591680) + 13G2H(H + 13)2 (5H10 + 379H9 + 12684H8 +
246618H7+3081621H6+25818279H5+146545426H4+554305412H3+1326486984H2+
1771869312H + 876113280) + GH(H12 + 104H11 + 4901H10 + 138424H9 + 2611323H8 +
34700952H7 + 333710663H6 + 2347743112H5 + 12061579816H4 + 44601786944H3 +
115119818736H2 + 195869441664H + 190060335360) + 6227020800)
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15 1
14! (429G

7H(H13 + 105H12 + 4949H11 + 138285H10 + 2548203H9 + 32591475H8 +
296524247H7+1934641695H6+9006146296H5+29371081320H4+64761694704H3+
90607371120H2 + 71230233600H + 23351328000) + 1001G6H(7H13 + 753H12 +
36427H11 + 1046565H10 + 19863301H9 + 262055739H8 + 2462092841H7 +
16597151175H6 + 79809813392H5 + 268535998008H4 + 609536264432H3 +
875078262960H2 + 703024588800H + 234378144000) + 2002G5H(7H13 + 770H12 +
38180H11 + 1127200H10 + 22043598H9 + 300489780H8 + 2925005120H7 +
20478207400H6 + 102449910883H5 + 358850685770H4 + 847029809700H3 +
1260684703800H2+1044748590912H+356860183680) +182G4H(42H13+4718H12+
239547H11 + 7264168H10 + 146429811H9 + 2065722384H8 + 20902177461H7 +
152846077384H6 + 802538235807H5 + 2962754475098H4 + 7388729409492H3 +
11606659643448H2 + 10095124659840H + 3583107964800) + 91G3H(15H13 +
1719H12 + 89303H11 + 2780643H10 + 57796585H9 + 845008197H8 + 8915766189H7 +
68487931809H6 + 381120718660H5 + 1506557423184H4 + 4066972726208H3 +
6974003577648H2 + 6607869863040H + 2515040236800) + 7G2H(11H13 + 1285H12 +
68263H11 + 2181881H10 + 46776873H9 + 709649655H8 + 7829433469H7 +
63520116803H6 + 378307951736H5 + 1629608969560H4 + 4915343944368H3 +
9750352815216H2 + 11137806737280H + 4995141177600) + GH(H13 + 119H12 +
6461H11 + 211939H10 + 4687683H9 + 73870797H8 + 854224943H7 + 7353403057H6 +
47277726496H5 + 225525484184H4 + 784146622896H3 + 1922666722704H2 +
3134328981120H + 2944310342400) + 87178291200)
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